The perception of quinine taste intensity is associated with common genetic variants in a bitter receptor cluster on chromosome 12

نویسندگان

  • Danielle R. Reed
  • Gu Zhu
  • Paul A.S. Breslin
  • Fujiko F. Duke
  • Anjali K. Henders
  • Megan J. Campbell
  • Grant W. Montgomery
  • Sarah E. Medland
  • Nicholas G. Martin
  • Margaret J. Wright
چکیده

The perceived taste intensities of quinine HCl, caffeine, sucrose octaacetate (SOA) and propylthiouracil (PROP) solutions were examined in 1457 twins and their siblings. Previous heritability modeling of these bitter stimuli indicated a common genetic factor for quinine, caffeine and SOA (22-28%), as well as separate specific genetic factors for PROP (72%) and quinine (15%). To identify the genes involved, we performed a genome-wide association study with the same sample as the modeling analysis, genotyped for approximately 610,000 single-nucleotide polymorphisms (SNPs). For caffeine and SOA, no SNP association reached a genome-wide statistical criterion. For PROP, the peak association was within TAS2R38 (rs713598, A49P, P = 1.6 × 10(-104)), which accounted for 45.9% of the trait variance. For quinine, the peak association was centered in a region that contains bitter receptor as well as salivary protein genes and explained 5.8% of the trait variance (TAS2R19, rs10772420, R299C, P = 1.8 × 10(-15)). We confirmed this association in a replication sample of twins of similar ancestry (P = 0.00001). The specific genetic factor for the perceived intensity of PROP was identified as the gene previously implicated in this trait (TAS2R38). For quinine, one or more bitter receptor or salivary proline-rich protein genes on chromosome 12 have alleles which affect its perception but tight linkage among very similar genes precludes the identification of a single causal genetic variant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GWAS of human bitter taste perception identifies new loci and reveals additional complexity of bitter taste genetics

Human perception of bitterness displays pronounced interindividual variation. This phenotypic variation is mirrored by equally pronounced genetic variation in the family of bitter taste receptor genes. To better understand the effects of common genetic variations on human bitter taste perception, we conducted a genome-wide association study on a discovery panel of 504 subjects and a validation ...

متن کامل

Receptor Polymorphism and Genomic Structure Interact to Shape Bitter Taste Perception

The ability to taste bitterness evolved to safeguard most animals, including humans, against potentially toxic substances, thereby leading to food rejection. Nonetheless, bitter perception is subject to individual variations due to the presence of genetic functional polymorphisms in bitter taste receptor (TAS2R) genes, such as the long-known association between genetic polymorphisms in TAS2R38 ...

متن کامل

Vegetable Intake in College-Aged Adults Is Explained by Oral Sensory Phenotypes and TAS2R38 Genotype.

Taste and oral sensations vary in humans. Some of this variation has a genetic basis, and two commonly measured phenotypes are the bitterness of propylthiouracil (PROP) and the number of fungiform papillae on the anterior tongue. While the genetic control of fungiform papilla is unclear, PROP bitterness associates with allelic variation in the taste receptor gene, TAS2R38. The two common allele...

متن کامل

Neural representation of bitter taste in the nucleus of the solitary tract.

Based on the molecular findings that many bitter taste receptors (T2Rs) are expressed within the same receptor cells, it has been proposed that bitter taste is encoded by the activation of discrete neural elements. Here we examined how a variety of bitter stimuli are represented by neural activity in central gustatory neurons. Taste responses (spikes/s) evoked by bathing the tongue and palate w...

متن کامل

Rats fail to discriminate quinine from denatonium: implications for the neural coding of bitter-tasting compounds.

Recent molecular findings indicate that many different G-protein-coupled taste receptors that bind with "bitter-tasting" ligands are coexpressed in single taste receptor cells in taste buds, leading to the prediction that mammals can respond behaviorally to structurally diverse "bitter" tastants but cannot discriminate among them. However, recent in situ calcium-imaging findings imply that rat ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2010